Rules of indices
Stuck? Read the notes
To enter an answer such as p^{12}, type p^12 in the answer box.
- y^{7} \times y^{2}
- s^{8} \times s^{5}
- p^{5} \times p^{12}
- w^{-3} \times w^{-5}
- y^{7} \div y^{2}
- s^{8} \div s^{5}
- p^{5} \div p^{12}
- w^{-3} \div w^{-5}
- \left( y^{7} \right)^{2}
- \left( s^{8} \right)^{5}
- \left( p^{5} \right)^{12}
- \left( w^{-3} \right)^{-5}
- 3^{9} \div 3^{6}
- \left( 2^{2} \right)^{3}
- 5^{7} \times 5^{-5}
- 1^{58} \times 1^{45}
- What does it simplify to?
- \left( 2z^{3} \right)^{2}
- \left( 3u^{2} \right)^{3}